Period:

Seat\#:
Directions: Show all work in a way that would earn you credit on the AP Test! This is always the rule! Some answers are provided at the end in italics and underlined. If you need more space, use binder paper and staple to your worksheet.

First-Order Reactions: (rate is directly proportional to the concentration)

$$
\text { Rate }=-\frac{\Delta[\mathrm{R}]}{\Delta \mathrm{t}}=\mathrm{k}[\mathrm{R}]
$$

using calculus, as the Δt approaches 0 , the Rate equation becomes

$$
\ln \left(\frac{[R]_{t}}{[R]_{0}}\right)=k t
$$

which can be rearranged into the " $y=m x+b$ " format

$$
\ln [R]_{t}=-k t+\ln [R]_{0}
$$

so... IF the reaction is first-order with respect to R,
plotting $\ln [R]_{\mathrm{t}}$ versus time results in a straight line with $\mathbf{k}=$-slope

SUMMARY

Order	Rate Equation	Integrated Rate Equation	Straight Line	Slope	k Units
0	Rate $=\mathrm{k}[\mathrm{R}]^{0}$	$[R]_{t}-[R]_{0}=-k t$	$[R] t$ vs. t	-k	mol / L*s
1	Rate $=\mathrm{k}[\mathrm{R}]^{1}$	$\operatorname{Ln}\left([\mathrm{R}]_{t} /[\mathrm{R}]_{0}\right)=-k t$ or see below table	$\operatorname{Ln}[\mathrm{R}]_{\mathrm{t}}$ vs t	-k	s^{-1}
2	Rate $=\mathrm{k}[\mathrm{R}]^{2}$	$\left(1 /[R]_{t}-\left(1 /[R]_{0}\right)=k t\right.$	$1 /[R] t$ vs t	k	L/ mol*s
			Memorize this!!		

Zero-Order Reactions	First-Order Reactions	Second-Order Reactions
Rate $=-\frac{\Delta[\mathrm{R}]}{\Delta \mathrm{t}}=\mathrm{k}[\mathrm{R}]^{0}$	Rate $=-\frac{\Delta[\mathrm{R}]}{\Delta \mathrm{t}}=\mathrm{k}[\mathrm{R}]^{1}$	Rate $=-\frac{\Delta[\mathrm{R}]}{\Delta \mathrm{t}}=\mathrm{k}[\mathrm{R}]^{2}$
$[\mathrm{R}]_{\mathrm{t}}-[\mathrm{R}]_{0}=-\mathrm{kt}$	$\operatorname{Ln}[\mathrm{R}]_{\mathrm{t}}-\operatorname{Ln}[\mathrm{R}]_{0}=-\mathrm{kt}$	$\frac{1}{[\mathrm{R}]_{\mathrm{t}}}-\frac{1}{[\mathrm{R}]_{0}}=\mathrm{kt}$
$[\mathrm{R}]_{\mathrm{t}}=-\mathrm{kt}+[\mathrm{R}]_{0}$	$\operatorname{Ln}[\mathrm{R}]_{\mathrm{t}}=-\mathrm{kt}+\operatorname{Ln}[\mathrm{R}]_{0}$	$\frac{1}{[\mathrm{R}]_{\mathrm{t}}}=\mathrm{kt}+\frac{1}{[\mathrm{R}]_{0}}$

Practice Problem: Show all work. Complete the following.
Data for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in a particular solvent at $45^{\circ} \mathrm{C}$ are as follows:

$\mathbf{t}(\mathbf{m i n})$	$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{mol} \cdot \mathrm{L}^{-1}$	$\mathbf{L n}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$	$\frac{\mathbf{1}}{\left[\mathbf{N}_{2} \mathbf{O}_{5}\right]}$
3.07	2.08		
8.77	1.67		
14.45	1.36		
31.28	0.72		

Plot the following:

$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$	$\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$	
Graph:	Graph:	$\frac{1}{\left[\mathbf{N}_{2} \mathbf{O}_{5}\right]}$
		Graph:
Equation:	Equation:	Equation:
R^{2} value:		R^{2} value:

What is the order of the reaction?

What is the rate constant, k , for the reaction?

